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ABSTRACT 

A simple method for the two-dimensional description of the flow velocity profile of Newtonian liquids in narrow channels is 
presented. This procedure is applied to a few types of cross-sections used in field-flow fractionation because the solutions of the flow 
velocity profiles are necessary for the theoretical description of the separation process in which the flow plays an active role. Limitations 
of the approach are discussed, and published results on this subject are compared. 

INTRODUCTION 

Field-flow fractionation (FFF) is an analytical 
method based on simultaneous actions of physical 
field forces and the flow of the carrier liquid passing 
through the separation channel [l]. The carrier 
liquid takes an active part exhibiting the non-uni- 
form flow velocity profile caused by viscosity effects 
and by the channel cross-section. Vectors of effective 
forces of the field and of the carrier liquid are 
mutually perpendicular: the field acts across the 
channel and the liquid flows longitudinally. Having 
different properties and consequently different spa- 
tial distributions due to the action of the field, 
components of a sample migrate along the channel 
with different elution velocities and thus separation 
occurs. It follows from the principle of FFF that the 
most important exploitations are separations of very 
high-molecular-weight samples; FFF thus holds a 
promising position in separations of polymers and 
particles, especially those of biological origin. These 
compounds, with respect to the properties of biolog- 
ical substances, could be irreversibly changed under 
conditions currently used in other separation meth- 
ods, e.g., high pressures, organic solvents and mul- 
tiple transfers from the mobile to the stationary 
phases [2]. 

Channels of various cross-sections can be em- 
ployed in FFF. Channels of rectangular cross-sec- 
tions are commonly used for the classical mode of 
exponential concentration distribution [3] and in 
some instances for the focusing mode [4-71. A dis- 
advantage of this cross-section for focusing tech- 
niques is the symmetry of the flow velocity profile. 
This fact implies the application of asymmetric flow 
profiles in channels of trapezoidal cross-sections for 
focusing techniques [S-lo]. Channels of circular 
cross-section are used, for example, in FFF tech- 
niques operating with an internally induced field 
(pressure FFF) [l l] or with an external electrical 
field [12]. 

In all these instances a theoretical description of 
the separation is impossible without a knowledge of 
a mathematical expression of the velocity profile of 
the carrier liquid. While the velocity profiles for the 
channels of rectangular, circular and elliptical cross- 
sections have been solved [13-151, the sofar pub- 
lished results for the channels of trapezoidal and 
parabolic cross-sections [ 16,171 have not brought 
generally applicable solutions. This work is concen- 
trated on a simple procedure for finding a two- 
dimensional description of the flow velocity profiles 
in channels which are or can be used in FFF. 
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THEORY 

For a unidirectional, horizontal and steady-state 
laminar flow of an incompressible viscous liquid in a 
channel of given length L, the general Navier- 
Stokes equations hold in the following form (the 
coordinate system is shown in Fig. I): 

y7* ; = 2 
YI 

(1) 

where V* is the Laplacean, G is the z-component of 
the velocity vector of the streamline, G is equal to 
- ap/iZz or approximately to Ap/L (Ap is the differ- 
ence in pressures between the inlet and outlet of the 
channel) and q is the fluid viscosity. 

The solution of eqn. 1 is simple for two infinitely 
wide parallel planes with a distance M, (‘I?‘* = 
a*/(sy*>: 

When we rewrite eqn. 2 in the form 

v(x,y) = f$ [&v*(x) - .!I*] 

where for the above mentioned case k = 2 and x is a 
real constant, the channel is divided into abstract 
elements coplanar to the plane ye and eqn. 3 
describes the velocity profile in such an arbitrary 
element X. 

(h 
I 

Fig. 1. Channel of rectangular cross-section. The velocity profile 
is schematically represented by the parabola in the plane yz and 
by the curve in the plane xz (see eqns. 2 and 5 for x = 0 or y = 0), 
h is the channel width and w is the channel height. 

For the real flow velocity profile of the liquid in a 
rectangular cross-section channel with cross-sec- 
tional dimensions h and 1~ (see Fig. 1) and for h S- IV, 
Takahashi and Gill [14] derived the relationship 

Y(XJ) = v(y)f’(x) (4) 

where v(y) is the velocity profile defined by eqn. 2 
and 

.m = 1 - 
cosh($n2x/h) 

cosh(&) 
(5) 

where u = h/w. The notation of the cross-section, 
with /I as the larger and IV as the smaller dimension, 
could seem to be unusual for the rectangular cross- 
section, but in the following cases of triangular and 
trapezoidal cross-sections, this approach is com- 
mon. That is why this notation is also used for the 
rectangular cross-section channel. The course of 
eqn. 4 is schematically drawn in Fig. 1 as the curve in 
the plane .YZ for ~5 = 0 and as the parabola in the 
plane J’Z for .Y = 0. 

Eqn. 4 does not fulfil eqn. 1 because of the term 
f(x). We used the termf(x) to display approximate 
flow velocity profiles in real channels. However, for 
most analytical purposes, the central parts of chan- 
nels are utilized. With respect to this fact (expressed 
by the condition j .Y j < h/2), eqn. 5 is approximately 
equal to 1 and eqn. 4 converts into eqn. 2, which does 
fulfil eqn. 1. 

To solve the problem of the velocity protile in 
channels with non-rectangular cross-sections, let us 
start with eqn. 3. If we are able to express U.(X) as a 
function of the variable x that describes the width of 
the cross-section of the channel in a point X, then we 
can substitute IZ~(.X) for this function and provide a 
function of two variables: r(s,y). To become the 
solution of eqn. 1, the new function must satisfy 
eqn. 1. This appropriate modification can be 
achieved by substituting v(x,y) into eqn. 1 and the 
following calculation of k, however, only for poly- 
nomial functions v(x,J~) of second or first order with 
respect to both x and y. so that their second 
derivatives are constant. This limitation is fulfilled 
by the functions M(X) of the types IV(X) = 4’e.v +f, 
r+(x) = ~e.~” + ,f‘ and IV(X) = e.~ + ,f; where c and 

.f are constants. Therefore, the above-described 
procedure will be further applied to these possible 
cross-sections of the channels. 
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The triangular cross-section is described by the 
expression w(x) = 2q(x + h/2), where q = tan (/I/2) 
(the coordinate system is shown in Fig. 2). After 
substituting this equation for W(X) in eqn. 3 and 
calculating of k, we obtain 

For the trapezoidalcross-section w(x) = 2q(x + K) 
(see Fig. 2) the following holds: 

v(x,y) = -*- dp qZK2 [(l + x/K)2 - y2/q%2] 
2y.C 1 - q2 

(10) 

v(x,y) = * 
1 

. 2 tq2cx + Ml2 - y21 2yL 1 -q (6) 
(1 + hZ/12wZ) 

If we use the equation for the mean velocity: 

h/2 
(v(y)), = l/h f v(x,y) dx, y = constant (7) 

-h/2 

we obtain the mean velocity in the plane xz (y = 0): 

(v>, = $ . & . h2 

and then we can write eqn. 6 as 

v&O) = 3 (v), (3 + x/h)2 (9) 

which is valid for each y = W(X), where c E (0,1/2). 
The analogous process yields the following results. 

Fig. 2. Channel of trapezoidal cross-section. The velocity profile 
is schematically represented by the curves in the planes yz or xz 
(see eqn. 20 for x = 0 or y = 0), h is the channel height, w is the 
channel width, /3 is the angle between the side walls of the channel 
and K is the distance of the apex line from the axis z. The dotted 
line represents the channel of triangular cross-section and the 
corresoondine velocitv DrOfik. 

(11) 

<v>x 
‘tx,‘) = (1 + @,lF&) t1 + x/1y)2 (12) 

For the parabolic cross-section with the upper 
restricting wall we can write w(x) = 2J2P(x + h/2) 
(the coordinate system is shown in Fig. 3) and 

v(x,y) = 6 . hP(l + 2x/h - v2/hP) (13) 

(v), = $. hP (14) 

v(x,O)'= (v>x(l + 2x/h) (15) 

Fig. 3. Channel of parabolic cross-section with two restricting 
walls. The velocity profile is represented schematically by the 
curves in the planes yz or xz (see eqn. 21 for x = 0 or y = 0), h is 
the height of the channel, P is the parameter of the parabola of the 
edge of the channel cross-section and Kis the distance of the apex 
line from the axis z. The dotted line represents the channel with 
only one limiting (upper) wall and the corresponding velocity 

_. 
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For a parabolic cross-section with two restricting 
walls, the following relationship holds: 

W(X) = 2 J~P(x + K) 

(see Fig. 3) and, consequently, 

v(x,y) = $ . KP (1 + x/K - y2/2KP) (16) 

(v), = $ . KP (17) 

VW) = <v>.xu + x/m (18) 

It is obvious from the procedure of derivations of 
the above-mentioned expressions that eqns. 6,9, 10, 

‘12, 13, 15, 16 and 18 do not generally vanish for x = 
+ h/2 (the upper and lower walls of the channel). 
Similarly to the case with the rectangular cross-sec- 
tion channel, we can eliminate this fact- by rearrang- 
ing these equations according to Takahashi and Gill 
[14]. However, one has to keep in mind that the 
validity of the equations generated by this procedure 
is limited only for (x ( < h/2. 

-K -K/2 0 K/2 K - 

Fig. 4. Velocity profiles in channels of triangular, trapezoidal and 
parabolic cross-sections. Curves la and 1 b represent the courses 
of eqn. 20 and curves 2a and 2b those ofeqn. 21 for the case h = K 
(two limiting walls) (full lines lb and 2b) and for the case h = 2K 
(one restricting wall) (dashed line). The dotted line displays the 
course of eqn. 6. Selected values: /I = 5”: P = 0.001; y = 0. 

For both the trapezoidal and parabolic cross-sec- 
tions we can write [provided that h x=- w(x) for 

x E ( - VLV91 

In the following two cases, we can obtain well 
known relationships [ 151 using the same basic pro- 
cedure. For a circular cross-section with radius R 
[w(x) = 2 JR* - x2, Fig. 51, we provide 

4 
v(x,y) = __ (R’ - x2 - _v2) 

4YL 
(22) 

a’ = h/w(x) (19) and for the elliptic cross-section with semi-axes a,h 

By multiplying eqns. 10 and 16, respectively, by [w(x) = 2a Jl - x2/h’, Fig. 61 analogously 

v(x,y) = A!- a2h2 (1 - x2/b2 - _v’/a*) (23) 
2qL a2 + h2 

f(x) from eqn. 5 in which a’ is used, the final velocity 
profile is obtained. Hence, for the trapezoidal cross- 
section 

AP 1 
v(x,y) = __ . 7 [4*(x + a2 - Y21 

2rfL 1 -q 

. 

1 

1 _ cosh( J% 2x/h) 

cosh( J%z’) 1 
(20) 

and analogously for the parabolic cross-section 

v(x,y) = $ [2P(X + K> - y*] 

I _ cosh(J% .2x/h) 

cosh(J%z’) 1 (21) 
The courses of eqns. 20 and 21 are shown in Fig. 4. 

In Figs. 2 and 3, the final velocity profiles -are 
1 

schematically drawn for y = 0 in the plane xz and 
Fig. 5. Channel of circular cross-section. The velocity profile is 

for x = 0 in the plane ,VZ, respectively. 
represented schematically by two parabolas in the planes xz or y= 
(see eqn. 22 for y = 0 or .Y = 0): R is the radius of the tube. 
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Fig. 6. Channel of elliptical cross-section. The velocity profile is 
schematically represented by two parabolas in the planes x.z or y,z 
(see eqn. 23 for y = 0 or x = 0); a and b are the semi-axes of the 
channel cross-section. 

DISCUSSION 

Several workers have tried to find the mathemat- 
ical description of the velocity profiles in channels 
with non-rectangular cross-sections. 

JanEa and Jahnova [16] solved the cases of 
channels with trapezoidal and parabolic cross-sec- 
tions. Their solutions are mathematical modifica- 
tions of the velocity profile (eqn. 4) according to 
Takahashi and Gill [ 141. The flow velocity profile for 
the trapezoidal cross-section obtained by JanEa and 
Jahnova [16] can be written as [without the term 
f(x), see eqn. 51 

v(x,y) = s . q2K2(1 - y2/q2K2)(1 +x/K)~ (24) 

Fig. 7 shows the courses of eqns. 10 and 24 for y = 
cw(x) (c = 0, 0.25, 0.50). It is obvious that eqn. 24 
has a different course for y < > 0 and even negative 
values. These authors’ solution for the parabolic 
cross-section exhibits analogous differences (see 
Fig. 8): 

v(x,y) = 2 . KP (1 - y2/2KP)(1 + x/K) (25) 

The two solutions have another disadvantage as 
they do not satisfy the general eqn. 1 [regardless of 
the termf(x)]. This discrepancy was introduced by 
WiCar [ 181. 

JanEa and Chmelik [17] published the following 
relationship for the description of the flow velocity 
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-1 -0.5 0 0.5 1K 

Fig. 7. Comparison of solutions of the velocity profile in a channel 
of triangular cross-section. Presented are the solution of eqn. IO 
(full line) and the solution ofref. 16 (eqn. 24) (dashed line). Values 
used: y = 0 (curves 1 and 1’) (plane of channel symmetry), y = 
w(x)/4 (curves 2 and 2’) and y = w(x)/2 (curves 3 and 3’) (the side 
walls of the channel). Selected values: K = h/2; /3 = 5”. 

profile in a channel with a trapezoidal cross-section: 

v(x) = 
(v>x 

1 + &tan2j3 
11 + (2x/h) tan j?]’ (261 

which was derived from eqn. 24 for y = 0 and fi + 0. 
This equation may be obtained from eqn. 24 or 10 
but only for h/w(O) = 2, which contradicts the 
premise conditioning the validity of the solutions of 

-\ 
9’ , 

-1 - 0.5 0 0.5 1 K 

Fig. 8. Comparison of solutions of the velocity profile in a channel 
of parabolic cross-section with one restricting wall. Presented are 
the solution of eqn. 16 (full line) and the solution of ref. 16 
(eqn. 25) (dashed line). Values used: y = 0 (curves 1 and 1’) (plane 
of channel symmetry), y = w(x)/4 (curves 2 and 2’) and y = 
w(x)/2 (curves 3 and 3’) (the side walls of the channel). Selected 
values: K = h/2; P = 0.001. 
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Fig. 9. Comparison of solutions of the velocity profiles in 
channels of triangular and trapezoidal cross-sections. Presented 
are solutions of eqn. 9 (curve 1) and eqn. 12 (curve 2). Curves 3 
and 4 show the course of the solution of ref. 17 (eqn. 26) for /3 = 
lo’ and B = I“. respectively. 

eqns. 4 and 24, respectively: h B w. In Fig. 9 the 
different course of eqn. 26 to that of eqns. 9 and 12 
can be seen. 

WiEar [18] solved the case of the flow velocity 
profile in a channel of a triangular cross-section 
without the restricting upper wall. His solution is 
identical with eqn. 6 (see Fig. 4, dotted line). 

Eqn. 20 displays the course of the flow velocity 
profile in the plane xz (v = 0) for the trapezoidal 
cross-section channel. In the central part (1 x / < h/2) 
one can see the parabolic shape of the flow velocity 
profile (see Fig. 2). In the case of a parabolic 
cross-section channel (eqn. 21) and under the same 
conditions, the shape of the flow velocity profile is 
linear (see Fig. 3). The solution of the flow velocity 
profile for a channel with a circular cross-section is a 
circular paraboloid (see eqn. 22 and Fig. 5). For the 
elliptical cross-section channel the solution is an 
elliptical paraboloid (see eqn. 23 and Fig. 6). 

As a comparison criterion for channels of differ- 
ent cross-sections, the limiting ratio defined as 

R = lim v,,,(x,O)/(v), 
a” K’ 
x-II/z 

J. PAZOUREK, J. CHMELiK 

can be used [v,&x,O) is the maximum velocity in the 
plane xz (J, = 0) and the other symbols have 
the above-mentioned meanings]. As follows from 
eqns. 9 and 15. for channels with triangular cross- 
sections this limiting ratio is equal to 3 and for 
parabolic cross-sections to 2. Consequently, chan- 
nels with triangular or trapezoidal cross-sections are 
of greater advantage than those of parabolic cross- 
sections because of their easier design and because of 
the values of the comparison criterion. 

The results of this work permit the design of a 
theoretical model of the FFF separation process in 
channels of trapezoidal cross-sections and, conse- 
quently, a comparison of the efficiencies of channels 
with different cross-sections for the individual tech- 
niques of FFF. 
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